学术报告:Interfacial Ligand Dynamics, Chemistry, and Photochemistry on Plasmonic Nanoparticle Surfaces: More Complicated Than We Thought?

发布者:金霞发布时间:2018-07-19浏览次数:33

报告人:Hui Wang, Associate Professor, University of South Carolina

报告题目:Interfacial Ligand Dynamics, Chemistry, and Photochemistry on Plasmonic Nanoparticle Surfaces: More Complicated Than We Thought?

报告时间:2018724下午2:00

报告地点:新能源大楼215会议室

报告人简介:

王辉教授于20016月毕业于南京大学化学系,获理学学士学位。20036月获南京大学理学硕士学位,分析化学专业,硕士导师为朱俊杰教授。20038月赴美国留学,在赖斯大学(Rice University)师从于美国科学院和工程院双院院士Naomi J. Halas 教授从事纳米光学材料研究,于20078月获物理化学专业博士学位(Ph.D.)20078月至20107月,在德克萨斯大学奥斯丁分校(University of Texas at Austin)化学和生物化学系师从于美国科学院院士Paul F. Barbara 教授从事单分子光谱的博士后研究。2010 8月获得独立教职,被聘为南卡罗来纳大学(University of South Carolina)化学和生物化学系助理教授,于20168月晋升为副教授,获终身教职。任教职期间讲授本科物理生物化学课程(Physical Biochemistry)和研究生分子光谱学课程(Molecular Spectroscopies)。王辉教授长期从事纳米光学,纳米催化学,和分子光谱学的研究,用现代物理化学手段主要是光谱学和电化学的方法研究纳米和分子科学领域里的复杂问题。王辉教授在JACS, Nano Letters, ACS Nano, Accounts of Chemical Research, PNAS, Advanced Materials, Angewandte Chemie, Chemistry of Materials, ACS Catalysis, Journal of Physical Chemistry Letters 等高影响力杂志上发表论文超过60 篇,被引用超过7500  (Google Scholar)h 因子为40,其中有20 篇文章单篇引用超过100 次。王辉教授主持的科研项目获得美国国家科学基金会(National Science Foundation),美国能源部(Department of Energy)和美国健康学会(National Institutes of Health)的资助。

报告简介:

This presentation focuses on interesting catalytic and photocatalytic molecular transformations at the interfaces between surface-capping ligands and plasmonic nanoparticles. We use surface-enhanced Raman scattering (SERS) as a plasmon-enhanced spectroscopic tool with unique time-resolving and molecular fingerprinting capabilities to quantitatively correlate the interfacial ligand dynamics with detailed molecular structures in real time under a diverse set of ligand adsorption, desorption, and exchange conditions at both equilibrium and non-equilibrium states, which enables us to delineate the effects of nanoscale surface curvature on the binding affinity, cooperativity, structural ordering, and the adsorption/desorption/exchange kinetics of monolayer organothiol and multilayer aryl ligands on colloidal Au nanoparticles.

I will also share some new insights on the facet-dependent catalytic properties of free-standing Au nanoparticles. We have recently demonstrated that desired plasmonic and catalytic properties can be integrated on the same particle by controllably creating high-index facets on individual sub-wavelength metallic nanoparticles. The capabilities to both nanoengineer high-index facets and fine-tune the plasmon resonances through deliberate particle geometry control open up unique opportunities for us to study, in great detail, the facet-dependent interfacial molecular transformations on Au nanocatalysts using SERS as a time-resolved spectroscopic tool.

Finally, I will further talk about our latest progress on developing quantitative mechanistic understanding of plasmonic hot electron-driven photocatalytic reactions. We use SERS as a unique approach to precisely monitor, in real time and one-particle-at-a-time, the plasmon-driven photocatalytic reactions at the molecule-nanoparticle interfaces. The insights gained from this work shed light on the mechanistic complexity of plasmon-driven photocatalysis and provide key design principles for the next generation plasmonic photocatalysts.