高立军

发布者:李梦溪发布时间:2018-09-05浏览次数:124


姓名:高立军
职称:教授
系方式:0512-65229905


电子邮箱:gaolijun@suda.edu.cn


个人简历: 

1987年毕业于北京大学化学系,获理学学士学位。1994年毕业于加拿大渥太华大学化学系,获理学博士学位。1994-1996年在加拿大西安大略大学做博士后。1997-2005年在美国Exxon,Tafel,Firmenich等公司工作。从事电化学新能源与新材料研究,包括超级电容、锂/钠离子电池和电催化等领域。2005年任南昌大学化学系特聘教授。2010年任职苏州大学能源学院特聘教授。发表学术论文80余篇,申请专利40余项。有科研成果转化和锂电池企业生产经验。

电话:0512-65229905
Email:gaolijun@suda.edu.cn
--------------------------------------------------------------------------------
获奖荣誉:

2013 盐城领军人才奖

2012 苏州姑苏人才奖

1994-1995加拿大国家科学与工程研究委员会(NSERC)博士后

1992 美国电化学会Joseph Richards Fellowship奖励

研究领域:

1. 超级电容(赝电容材料,混合超级电容器)

2. 锂/钠离子电池(正极材料、负极材料、器件)

3. 电催化(氢析出、氮气电催化,非贵金属催化剂)


科研项目:

1. 国家自然科学基金20663005,“高比能量电化学超级电容研究”,主持

2. 国家863节能与新能源汽车重点项目子课题,2007-2009,“车用动力电池模块测试方法研究” 2007AA11A102,主持

3. 国家863电动汽车关键技术及系统集成重大项目子课题,2011-2013,“动力电池及关键材料共性技术及评价体系研究” 2011AA11A235,主持

4. 苏州大学-阿特斯公司联合项目,2013-2015,光伏储能系统开发

5.苏州大学-加拿大滑铁卢大学联合项目,2014-2016,钠离子电池成果转化

6. 国家自然科学基金广东联合基金,U1401248,“超级电容材料与器件的基础研究”,2015-2018,主持

7. 苏州大学-万润公司联合项目,2018-2019,高比能量锂电池正极材料开发


代表性论著、研究成果:

  1. H. Wang, L. Ouyang, G. Zou,* C. Sun, J. Hu,* X. Xiao, L. Gao*, Optimizing MoS2 Edges by Alloying Isovalent W for Robust Hydrogen Evolution Activity, ACS Catalysis, 8, 9529-9536, 2018.

  2. H. Wang, L. Gao*, Recent developments in electrochemical hydrogen evolution reaction, Current Opinion in Electrochemistry, 7, 7-14, 2018

  3. H. Jia, W. Zhu, Z. Xu, X. Nie, T. Liu, L. Gao*, J. Zhao*, Precursor Effects on Structural Ordering and Electrochemical Performances of Ni-rich Layered LiNi0.8Co0.2O2 Cathode Materials for High-rate Lithium Ion Batteries, Electrochim. Acta, 266, 7-16, 2018.

  4. H. Wang, Y. Cao, C. Sun, G. Zou,* J. Huang, X. Kuai, J. Zhao, L. Gao*, Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting, ChemSusChem, 10, 3540-3546, 2017.

  5. J. Zhao, R. Huang, P. Ramos, Y. Yue, Q. Wu, M. Pavanello, J. Zhou, X. Kuai, L. Gao,*, H. He,*, Y. Wang*, Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance, ACS Appl. Mater. Interfaces, 9, 31181-31191, 2017.

  6. J. Jiang, W. Yang, H. Wang, Y. Zhao, J. Guo, J. Zhao*, M. Beidaghi*, L. Gao*, Electrochemical Performances of MoO2/C Nanocomposite for Sodium Ion Storage: An Insight into Rate Dependent Charge/Discharge Mechanism, Electrochim. Acta, 240, 379-387, 2017.

  7. Z. Deng,T. Liu,T. Chen,J. Jiang,W. Yang,J. Guo,J Zhao*,H. Wang*,L. Gao*, Enhanced Electrochemical Performances of Bi2O3/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 9, 12469-12477, 2017.

  8. H. Wang, Y. Cao, G. Zou* Q. Yi, J. Guo, L. Gao*, High-Performance Hydrogen Evolution Electrocatalyst Derived from Ni3C Nanoparticles Embedded in a Porous Carbon Network, ACS Appl. Mater. Interfaces, 9, 60-64, 2017.

  9. J. Zhao*, H. Wang, Z. Xie, S. Ellis, X. Kuai, J. Guo, X. Zhu, Y. Wang*, L. Gao*, Tailorable electrochemical performance of spinel cathode materials via in-situ integrating a layered Li2MnO3 phase for lithium-ion batteries, J. Power Sources, 333, 43-52, 2016.

  10. W. Yang, H. Wang, T. Liu, L. Gao*, A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries, Mater. Lett., 167, 102-105, 2016.

  11. B. Zhu, Z. Deng, W. Yang, H. Wang, L. Gao*, Pyrolyzed polyaniline and graphene nano sheet composite with improved rate and cycle performance for lithium storage, Carbon, 92, 354-361, 2015.

  12. T. Liu, Y. Zhao, L. Gao*, J. Ni*, Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage, Sci. Reports, 5, 9307, 2015.

  13. H. Zhang; L. Gao*; Y. Gong*, Exfoliated MoO3 nanosheets for high-capacity lithium storage, Electrochem. Comm., 52, 67-70, 2015.

  14. D. Yuan; W. Yang; J. Ni; L. Gao*, Sandwich structured MoO2@TiO2@CNT nanocomposites with high-rate performance for lithium ion batteries, Electrochim. Acta, 163, 57-63, 2015.

  15. Y. Wang, B. Zhu, J. Ni, L. Zhang, H. Wang,* L. Gao*, Pyrolyzed Polyaniline Graphene Nanosheets with Enhanced Lithium Storage Properties: Preparation and Characterization, ChemElectroChem, 1, 951-956, 2014.

  16. J. Liu, J. Ni*, Y. Zhao, H. Wang, L. Gao*, Grapecluster-like Fe3O4/C@CNT nanostructures with stable Li-storage capability, J. Mater. Chem. A, 1, 12879-12884, 2013.

  17. J. Ni, W. Liu, J. Liu, L. Gao*, J. Chen*, Investigation on a 3.2 V LiCoPO4/Li4Ti5O12 full battery, Electrochem. Comm. 35 1-4, 2013.

  18. L. Zhao, J. Ni*, H. Wang, L. Gao*, Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries, RSC Adv., 3, 6650-6655, 2013.

  19. G. Wang, J. Ni*, H. Wang, L. Gao*, High-performance CNT-wired MoO3 nanobelts for Li-storage application, J. Mater. Chem. A, 1(12), 4112-4118, 2013.

  20. X. Liu, N. Zhang, J. Ni, L. Gao*, Improved electrochemical performance of sol-gel method preparedNa4Mn9O18 inaqueous hybridNa-ion supercapacitor, J. Solid State Electrochem., 17 1939–1944, 2013.

  21. J. Ni*, Y. Huang, L. Gao*, A high-performance hard carbon for Li-ion batteries and supercapacitors application, J. Power Sources, 223, 306-311, 2013.

  22. J. Ni*, Y. Han, J. Liu, H. Wang, L. Gao*, Improving Electrochemical Properties of LiCoPO4 by Mn Substitution: A Case Research on LiCo0.5Mn0.5PO4, ECS Electrochem. Lett., 2(1), A3-A5, 2012.

  23. J. Ni, L. Gao*, L. Lu*, Carbon coated lithium cobalt phosphate for Li-ion batteries: comparison of three coating techniques, J. Power Sources, 221, 35-41, 2013.

  24. J. Ni, H. Wang, L. Gao*, L. Lu,*, A high-performance LiCoPO4/C core/shell composite for Li-ion batteries, Electrochim. Acta, 70, 349-354, 2012.

  25. T. Li, L. Gao*, A high capacity graphene nano-sheet material with capacitive characteristics for the anode of lithium-ion batteries, J. Solid State Electrochem., 16, 557-561, 2012.

  26. J. Ni, L. Gao*, Effect of copper doping on LiMnO4 prepared via hydrothermal route, J. Power Sources, 196, 6498-6501, 2011.

  27. S. Zhao, F. Wu, L. Yang, L. Gao*, A.F. Burke*, A measurement method for determination of DC internal resistance of batteries and supercapacitors, Electrochem. Comm., 12, 242-245, 2010.

  28. L. Yang, L. Gao*, Synthesis and characterization of Li4Ti5O12/C composite as negative electrode material of Li-ion battery, J. Alloys Comp., 485, 93-97, 2009.

  29. N. Yu, L. Gao*, S. Zhao, Z. Wang, “Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor”, Electrochim. Acta., 54, 3835-3841, 2009.

  30. N. Yu, L. Gao*, Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor, Electrochem. Comm., 11, 220-222, 2009.

  31. L. Gao*, A. Peng, Z. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao and B. Ding, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors, Solid State Comm., 146, 380-383, 2008.

  32. D. Zhou, L. Gao*, Effect of Electrochemical preparation methods on structure and properties of PbO2 anodic layer, Electrochim. Acta, 35/4, 2060-2064, 2007.

  33. L. Gao, P. Ma, K. Novogradecz and P.R. Norton, Characterization of permalloy thin films electrodeposited on Si(111) surfaces, J. Appl. Phys., 81(11), 7595, 1997.

  34. L. Gao, S. Qian and B.E. Conway, Arsenic poisoning effects on cathodic polarization and H adsorption at Pt and steel electrodes in KF·2HF melts, J. Appl. Electrochem., 26, 803, 1996.

  35. L. Gao, B.E. Conway, Poison effects of arsenic species on H adsorption and kinetic behavior of the H2 evolution reaction at Pt in KOH solution, J. Electroanal. Chem., 395, 261, 1995.

  36. L. Gao, G.. Anderson, P.R. Norton, Z-H. Lu, J.P. McCaffrey and M.J. Graham, Electrodeposition and characterization of magnetic Ni-Fe thin films on n-InP(100) surfaces, J. Appl. Phys., 78(9), 5795, 1995.

  37. L. Gao, G. Anderson, P.R. Norton, Z-H. Lu and M.J. Graham, Surface topography and composition of InP(100) after various sulphur treatments, J. Vac. Sci. Tech., B, 13(5), 2053, 1995.

  38. L. Gao, S. Qian, B.E. Conway, Electrolyte wetting effects in the comparative polarization behavior of the H2 evolution reaction at Ni-Mo-Cd electrodes in KF·2HF and KOH·2H2O melts, J. Appl. Electrochem., 25(1), 6, 1995.

  39. L. Gao, J.A. Bardwell, Z.H. Lu, M.J. Graham and P.R. Norton, Anodic passivation of p-InP(100) in (NH4)2Sx solution, J. Electrochem. Soc., 142(1), L14, 1995.

  40. L. Gao and B.E. Conway, Absorption and adsorption of H in the H2 evolution reaction, and the effects of co-adsorbed poisons, Electrochim. Acta, 39, 1681, 1994.

  41. L. Bai, L. Gao, B.E. Conway, The problem of in-situ real-area determination in the evaluation of performance rough or porous, gas-evolving electrocatalysts; Part II: Unfolding of the electrochemically accessible surface of rough or porous electrodes: a case-study with an electrodeposited porous Pt electrode, J. Chem. Soc., Faraday Trans., 89, 243, 1993.

  42. L. Bai, L. Gao, B.E. Conway, The problem of in-situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts; Part I: Basis for distinction between capacitance of the double-layer and the pseudo-capacitance due to adsorbed H in the H2 evolution reaction at Pt, J. Chem. Soc., Faraday Trans., 89, 235, 1993.

  43. L. Gao, Determination of effective surface area of porous, gas-evolving electrocatalysts from potential-relaxation transients, J. Electrochem. Soc., Interface, Vol.2, No.3, 58, 1993.

  44. S.M. Cai, L. Gao, L. Su, J. Zhang, L. Chen and A. Fujishima, Phenomena of weak electroluminescence of iron and other metal electrodes and their application potentiality in electrochemical research, Electrochim. Acta, 36, 1591, 1991.

  45. 蔡生民,高立军, “半导体电致发光综述”,化学通报,3, 1,(1989)